La regla de la adición o regla de la suma establece que la probabilidad de ocurrencia de cualquier evento en particular es igual a la suma de las probabilidades individuales, si es que los eventos son mutuamente excluyentes, es decir, que dos no pueden ocurrir al mismo tiempo.
P(A o B) = P(A) U P(B) = P(A) + P(B) si A y B son mutuamente excluyente. P(A o B) = P(A) + P(B) − P(A y B) si A y B son no excluyentes.
Siendo: P(A) = probabilidad de ocurrencia del evento A. P(B) = probabilidad de ocurrencia del evento B. P(A y B) = probabilidad de ocurrencia simultánea de los eventos A y B.
Ejemplo:
1) Sea A el suceso de sacar un As de una baraja estándar de 52 cartas y B sacar una carta con corazón rojo. Calcular la probabilidad de sacar un As o un corazón rojo o ambos en una sola extracción.
Solución:
A y B son sucesos no mutuamente excluyentes porque puede sacarse el as de corazón rojo.
Las probabilidades son:
Reemplazando los anteriores valores en la regla general de la adición de probabilidades para eventos no mutuamente excluyentes se obtiene:
No hay comentarios:
Publicar un comentario